organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ethyl 6-(4-fluorophenyl)-4-hydroxy-2-oxo-4-trifluoromethyl-1,3-diazinane-5-carboxylate monohydrate

Gong-Chun Li,^a Chang-Zeng Wu,^a Li-Li Guo^b and Feng-Ling Yang^a*

^aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and ^bDepartment of Chemistry, Zhengzhou University, Zhengzhou Henan Province, 450052, People's Republic of China

Correspondence e-mail: actaeli@gmail.com

Received 22 May 2011; accepted 7 June 2011

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.031; wR factor = 0.072; data-to-parameter ratio = 15.4.

The asymmetric unit of the title compound, $C_{14}H_{14}F_4N_2O_4$.-H₂O, contains two crystallographically independent organic molecules and two water molecules. The two 1,3-diazinane rings adopt a half-chair conformation and the dihedral angles between their mean planes and those of the benzene rings are 75.65 (4)° and 49.41 (3)° in the two molecules. The crystal structure is stabilized by intermolecular $O-H\cdots O$ and N- $H\cdots O$ hydrogen bonds.

Related literature

For the bioactivity of dihydropyrimidines, see: Brier *et al.* (2004); Cochran *et al.* (2005); Moran *et al.* (2007); Zorkun *et al.* (2006). For the bioactivity of organofluorine compounds, see: Hermann *et al.* (2003); Ulrich (2004). For a related structure, see: Song *et al.* (2010).

Experimental

Crystal data

Data collection

Rigaku Saturn CCD area detector
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2009)

 $T_{\rm min} = 0.972, T_{\rm max} = 0.980$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.031$	
$vR(F^2) = 0.072$	
S = 0.87	
7612 reflections	
193 parameters	

1 - 113 K $0.20 \times 0.18 \times 0.14 \text{ mm}$

20692 measured reflections 7612 independent reflections 4575 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.041$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2-H2\cdots O9^{i}$	0.889 (15)	1.860 (16)	2.7482 (14)	176.2 (15)
O9−H9A…O3 ⁱⁱ	0.91 (2)	1.90 (2)	2.8026 (15)	169.8 (18)
O6−H6···O10 ⁱⁱⁱ	0.893 (16)	1.788 (16)	2.6770 (14)	173.5 (15)
$N3-H3A\cdotsO10^{iii}$	0.823 (14)	2.583 (15)	3.0737 (16)	119.6 (12)
$N4-H4A\cdots O5^{iii}$	0.904 (14)	1.900 (15)	2.8010 (14)	174.8 (13)
$N1 - H1A \cdots O1^{iv}$	0.828 (14)	2.109 (14)	2.9235 (15)	167.9 (13)
$N2-H2A\cdots O5^{v}$	0.906 (14)	1.958 (15)	2.8395 (14)	163.8 (13)
$O9-H9B\cdots O1^{vi}$	0.80 (2)	2.00 (2)	2.7443 (15)	155 (2)
$O10-H10A\cdots O9^{vii}$	0.861 (17)	1.925 (17)	2.7833 (15)	175.4 (16)
$O10 - H10B \cdot \cdot \cdot O7^{viii}$	0.82 (2)	2.07 (2)	2.8685 (14)	166 (2)

Symmetry codes: (i) x, y - 1, z; (ii) -x, -y + 1, -z + 1; (iii) -x + 1, -y + 2, -z + 2; (iv) -x + 1, -y, -z + 1; (v) -x + 1, -y + 1, -z + 2; (vi) -x + 1, -y + 1, -z + 1; (vii) -x + 1, -y + 2, -z + 1; (viii) x + 1, y, z.

Data collection: *CrystalClear* (Rigaku, 2009); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2293).

References

Brier, S., Lemaire, D., Debonis, S., Forest, E. & Kozielski, F. (2004). Biochemistry, 43, 13072–13082.

Cochran, J. C., Gatial, J. E., Kapoor, T. M. & Gilbert, S. P. (2005). J. Biol. Chem. 280, 12658–12667.

Hermann, B., Erwin, H. & Hansjorg, K. (2003). US patent 2 003 176 284.

Moran, M. M., Fanger, C., Chong, J. A., McNamara, C., Zhen, X. G. & Mandel-Brehm, J. (2007). WO Patent 2 007 073 505.
Rigaku (2009). *CrystalClear*. Rigaku/MSC, The Woodlands, Texas, USA.

- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, X.-P., Li, G.-C., Wu, C.-Z. & Yang, F.-L. (2010). *Acta Cryst.* E66, o1083. Ulrich, H. (2004). US patent 2 004 033 897. Zorkun, I. S., Sarac, S., Celebi, S. & Erol, K. (2006). *Bioorg. Med. Chem.* 14,
- 8582-8589.

Acta Cryst. (2011). E67, o1704-o1705 [doi:10.1107/S1600536811021866]

Ethyl 6-(4-fluorophenyl)-4-hydroxy-2-oxo-4-trifluoromethyl-1,3-diazinane-5-carboxylate monohydrate

G.-C. Li, C.-Z. Wu, L.-L. Guo and F.-L. Yang

Comment

Dihydropyrimidine (DHPM) derivatives can be used as potential calcium channel blockers (Zorkun *et al.*, 2006), inhibitors of mitotic kinesin Eg5 for treating cancer (Cochran *et al.*, 2005; Brier *et al.*, 2004) and as TRPA1 modulators for treating pain (Moran *et al.*, 2007). In addition, compounds that contain fluorine have special bioactivity, *e.g.* flumioxazin is a widely used herbicide (Hermann *et al.*, 2003; Ulrich, 2004). This led us to focus our attention on the synthesis and bioactivity of these important fused perfluoroalkylated heterocyclic compounds. During the synthesis of DHPM derivatives, the title compound, an intermediate $C_{14}H_{14}F_4N_2O_4.H_2O(I)$ was isolated and the structure confirmed by X-ray diffraction.

The asymmetric unit of the title compound contains two crystallographically independent organic molecules and two water molecules. The two 1,3-diazinane rings adopt half-chair conformation, the mean planes formed by the ring atoms excluding the C atom bonded to the ethoxy carbonyl group have r.m.s. deviations of 0.0202Å and 0.0397 Å, the dihedral angles between the mean planes and benzenes ring are 75.65 (4)° and 49.41 (3)° respectively. The crystal structure is stabilized by intermolecular hydrogen bonds (O—H…O and N—H…O). For a crystal structure related to the title compound, see: Song *et al.*, 2010.

Experimental

The title compound was synthesized refluxing for 3 h a stirred solution of 4-fluorobenzaldehyde (2.50 g, 20 mmol), ethyl ethyl 4,4,4-trifluoroacetoacetate (4.42 g, 24 mmol) and urea (1.80 g, 30 mmol) in 20 ml of anhydrous ethanol. The reaction was catalyzed by sulfamic acid (0.6 g). The solvent was evaporated *in vacuo* and the residue was washed with water. The title compound was recrystallized from 50% aqueous ethanol and single crystals of the title compound were obtained by slow evaporation of mother liquor.

Refinement

Hydrogen atoms involved in hydrogen-bonding inetractions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were placed in calculated positions, with C—H(aromatic) = 0.95 Å and C—H(aliphatic) = 0.98 Å, 0.99 Å or 1.00 Å, and treated as riding, with $U_{iso}(H) = 1.2Ueq(C)$.

Figures

Fig. 1. Molecular configuration and atom numbering scheme for (I), with displacement ellipsoids drawn at the 30% probability level.

Ethyl 6-(4-fluorophenyl)-4-hydroxy-2-oxo-4-trifluoromethyl- 1,3-diazinane-5-carboxylate monohydrate

Crystal data	
$C_{14}H_{14}F_4N_2O_4{\cdot}H_2O$	Z = 4
$M_r = 368.29$	F(000) = 760
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.527 \ {\rm Mg \ m}^{-3}$
a = 10.0196 (9) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 12.1718 (12) Å	Cell parameters from 5664 reflections
c = 14.3037 (14) Å	$\theta = 1.5 - 27.9^{\circ}$
$\alpha = 98.463 \ (7)^{\circ}$	$\mu = 0.14 \text{ mm}^{-1}$
$\beta = 103.642 \ (8)^{\circ}$	<i>T</i> = 113 K
$\gamma = 104.400 \ (9)^{\circ}$	Prism, colorless
V = 1602.2 (3) Å ³	$0.20\times0.18\times0.14~mm$

Data collection

Rigaku Saturn CCD area detector diffractometer	7612 independent reflections
Radiation source: rotating anode	4575 reflections with $I > 2\sigma(I)$
multilayer	$R_{\rm int} = 0.041$
Detector resolution: 14.63 pixels mm ⁻¹	$\theta_{\text{max}} = 27.9^\circ, \ \theta_{\text{min}} = 1.5^\circ$
ω and ϕ scans	$h = -13 \rightarrow 13$
Absorption correction: multi-scan (CrystalClear; Rigaku, 2009)	$k = -16 \rightarrow 14$
$T_{\min} = 0.972, \ T_{\max} = 0.980$	$l = -18 \rightarrow 18$
20692 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.072$	H atoms treated by a mixture of independent and constrained refinement

<i>S</i> = 0.87	$w = 1/[\sigma^2(F_o^2) + (0.0267P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
7612 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
493 parameters	$\Delta \rho_{\text{max}} = 0.35 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.21735 (8)	0.30976 (7)	0.47711 (6)	0.0278 (2)
F2	0.44636 (9)	0.33996 (7)	0.51405 (6)	0.0313 (2)
F3	0.30625 (9)	0.19817 (7)	0.39477 (6)	0.0288 (2)
F4	0.49822 (9)	0.38466 (7)	1.13399 (6)	0.0355 (2)
F5	-0.11880 (8)	0.62729 (6)	0.98946 (6)	0.02501 (19)
F6	0.01160 (8)	0.72196 (7)	1.13589 (6)	0.02698 (19)
F7	0.09316 (8)	0.61081 (6)	1.04636 (6)	0.02592 (19)
F8	0.28213 (9)	0.78195 (7)	0.49828 (6)	0.0356 (2)
01	0.57514 (10)	0.02599 (8)	0.62488 (6)	0.0205 (2)
O2	0.16764 (10)	0.09767 (8)	0.52602 (7)	0.0212 (2)
H2	0.1553 (16)	0.0484 (13)	0.4701 (12)	0.041 (5)*
O3	0.10031 (10)	0.25206 (8)	0.67210 (7)	0.0236 (2)
O4	0.27857 (9)	0.41634 (7)	0.69581 (7)	0.0218 (2)
05	0.44555 (9)	0.97089 (7)	1.10542 (6)	0.0191 (2)
O6	-0.00739 (10)	0.86354 (8)	0.99826 (7)	0.0189 (2)
Н6	0.0185 (16)	0.9111 (13)	1.0575 (12)	0.039 (5)*
07	-0.13754 (10)	0.74745 (8)	0.79365 (7)	0.0226 (2)
08	-0.07876 (9)	0.58103 (7)	0.79232 (6)	0.0209 (2)
N1	0.41809 (12)	0.11768 (10)	0.55571 (8)	0.0196 (3)
N2	0.45729 (12)	0.10551 (10)	0.71961 (8)	0.0191 (3)
N3	0.22350 (12)	0.84435 (9)	1.06802 (8)	0.0173 (2)
N4	0.31320 (12)	0.91025 (10)	0.94499 (8)	0.0184 (3)
C1	0.48618 (14)	0.07974 (11)	0.63376 (9)	0.0175 (3)
C2	0.30765 (14)	0.17404 (11)	0.55694 (9)	0.0172 (3)
C3	0.32023 (15)	0.25634 (12)	0.48542 (10)	0.0211 (3)
C4	0.33613 (14)	0.24284 (11)	0.66264 (9)	0.0163 (3)
H4	0.4306	0.3044	0.6806	0.020*

C5	0.22216 (14)	0.30121 (11)	0.67569 (9)	0.0177 (3)
C6	0.18167 (15)	5)0.48463 (12)0.71134 (10)		0.0256 (3)
H6A	0.2381	0.5624	0.7530	0.031*
H6B	0.1156	0.4457	0.7462	0.031*
C7	0.09575 (15)	0.49743 (12)	0.61357 (10)	0.0292 (4)
H7A	0.1613	0.5278	0.5760	0.044*
H7B	0.0402	0.5513	0.6251	0.044*
H7C	0.0301	0.4214	0.5762	0.044*
C8	0.34703 (14)	0.16004 (11)	0.73406 (9)	0.0167 (3)
H8	0.2527	0.0986	0.7177	0.020*
C9	0.38729 (14)	0.22261 (11)	0.84106 (9)	0.0169 (3)
C10	0.30035 (14)	0.18702 (11)	0.90023 (10)	0.0198 (3)
H10	0.2135	0.1254	0.8723	0.024*
C11	0.33834 (15)	0.23995 (12)	0.99955 (10)	0.0232 (3)
H11	0.2798	0.2143	1.0402	0.028*
C12	0.46237 (15)	0.32993 (12)	1.03707 (10)	0.0235 (3)
C13	0.55181 (15)	0.36883 (12)	0.98175 (10)	0.0259 (3)
H13	0.6374	0.4316	1.0101	0.031*
C14	0.51319 (15)	0.31362 (12)	0.88317 (10)	0.0231 (3)
H14	0.5740	0.3385	0.8437	0.028*
C15	0.33267 (14)	0.91286 (11)	1.04127 (9)	0.0164 (3)
C16	0.08059 (13)	0.79019 (11)	1.00238 (9)	0.0157 (3)
C17	0.01571 (14)	0.68607 (11)	1.04325 (10)	0.0196 (3)
C18	0.09283 (13)	0.75018 (11)	0.89773 (9)	0.0157 (3)
H18	0.1481	0.6921	0.8994	0.019*
C19	-0.05367 (14)	0.69559 (11)	0.82313 (9)	0.0179 (3)
C20	-0.21972 (15)	0.51967 (11)	0.72276 (10)	0.0263 (3)
H20A	-0.2292	0.5474	0.6605	0.032*
H20B	-0.2968	0.5335	0.7510	0.032*
C21	-0.23104 (15)	0.39215 (11)	0.70373 (10)	0.0267 (3)
H21A	-0.1517	0.3801	0.6785	0.040*
H21B	-0.3228	0.3484	0.6550	0.040*
H21C	-0.2259	0.3650	0.7653	0.040*
C22	0.17640 (13)	0.85802 (11)	0.86849 (9)	0.0160 (3)
H22	0.1201	0.9153	0.8673	0.019*
C23	0.20333 (14)	0.83296 (10)	0.76879 (9)	0.0162 (3)
C24	0.10992 (14)	0.84699 (11)	0.68548 (9)	0.0197 (3)
H24	0.0276	0.8695	0.6915	0.024*
C25	0.13467 (15)	0.82869 (11)	0.59370 (10)	0.0218 (3)
H25	0.0699	0.8373	0.5369	0.026*
C26	0.25512 (15)	0.79791 (11)	0.58763 (10)	0.0233 (3)
C27	0.35117 (15)	0.78274 (11)	0.66745 (10)	0.0225 (3)
H27	0.4336	0.7610	0.6604	0.027*
C28	0.32418 (14)	0.80009 (11)	0.75858 (10)	0.0198 (3)
H28	0.3886	0.7895	0.8146	0.024*
09	0.13823 (13)	0.94116 (9)	0.35763 (7)	0.0243 (2)
O10	0.90924 (12)	0.99386 (10)	0.82314 (8)	0.0282 (3)
H1A	0.4218 (15)	0.0862 (12)	0.5014 (10)	0.027 (4)*
H2A	0.4935 (15)	0.0714 (12)	0.7678 (11)	0.035 (4)*
	. /	. /	. /	· /

H3A	0.2281 (16)	0.8644 (13)	1.1265 (11)	0.033 (5)*
H4A	0.3906 (15)	0.9527 (12)	0.9307 (10)	0.032 (4)*
H9A	0.065 (2)	0.8778 (17)	0.3556 (14)	0.081 (7)*
H9B	0.215 (2)	0.9295 (17)	0.3632 (14)	0.074 (8)*
H10A	0.8938 (18)	1.0100 (14)	0.7657 (13)	0.049 (5)*
H10B	0.883 (2)	0.9233 (18)	0.8184 (14)	0.080 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U ¹³	U^{23}
F1	0.0324 (5)	0.0316 (5)	0.0278 (5)	0.0196 (4)	0.0087 (4)	0.0144 (4)
F2	0.0268 (5)	0.0318 (5)	0.0332 (5)	0.0016 (4)	0.0064 (4)	0.0162 (4)
F3	0.0391 (5)	0.0352 (5)	0.0176 (4)	0.0168 (4)	0.0097 (4)	0.0099 (4)
F4	0.0378 (5)	0.0467 (5)	0.0169 (4)	0.0151 (4)	0.0028 (4)	-0.0048 (4)
F5	0.0194 (4)	0.0231 (4)	0.0288 (5)	0.0000 (4)	0.0064 (4)	0.0057 (4)
F6	0.0336 (5)	0.0287 (4)	0.0203 (4)	0.0055 (4)	0.0132 (4)	0.0077 (4)
F7	0.0281 (5)	0.0213 (4)	0.0317 (5)	0.0099 (4)	0.0087 (4)	0.0108 (4)
F8	0.0433 (5)	0.0454 (5)	0.0210 (5)	0.0118 (5)	0.0179 (4)	0.0039 (4)
01	0.0218 (5)	0.0253 (5)	0.0187 (5)	0.0129 (4)	0.0065 (4)	0.0059 (4)
O2	0.0193 (5)	0.0221 (5)	0.0186 (5)	0.0038 (4)	0.0036 (4)	0.0002 (4)
03	0.0181 (5)	0.0226 (5)	0.0303 (6)	0.0047 (4)	0.0091 (4)	0.0047 (4)
O4	0.0203 (5)	0.0157 (5)	0.0286 (6)	0.0071 (4)	0.0053 (4)	0.0021 (4)
O5	0.0160 (5)	0.0221 (5)	0.0142 (5)	0.0011 (4)	0.0005 (4)	0.0029 (4)
O6	0.0198 (5)	0.0197 (5)	0.0186 (5)	0.0091 (4)	0.0056 (4)	0.0024 (4)
07	0.0203 (5)	0.0217 (5)	0.0233 (5)	0.0066 (4)	0.0013 (4)	0.0051 (4)
O8	0.0182 (5)	0.0172 (5)	0.0213 (5)	0.0027 (4)	-0.0001 (4)	-0.0008 (4)
N1	0.0239 (7)	0.0268 (6)	0.0136 (6)	0.0150 (5)	0.0070 (5)	0.0057 (5)
N2	0.0240 (7)	0.0236 (6)	0.0144 (6)	0.0136 (5)	0.0059 (5)	0.0067 (5)
N3	0.0170 (6)	0.0212 (6)	0.0120 (6)	0.0030 (5)	0.0039 (5)	0.0029 (5)
N4	0.0141 (6)	0.0227 (6)	0.0144 (6)	0.0000 (5)	0.0019 (5)	0.0044 (5)
C1	0.0184 (7)	0.0163 (7)	0.0162 (7)	0.0035 (6)	0.0039 (6)	0.0035 (5)
C2	0.0157 (7)	0.0191 (7)	0.0173 (7)	0.0062 (6)	0.0040 (6)	0.0043 (6)
C3	0.0199 (8)	0.0248 (7)	0.0201 (7)	0.0090 (6)	0.0048 (6)	0.0070 (6)
C4	0.0147 (7)	0.0182 (7)	0.0152 (7)	0.0048 (6)	0.0025 (6)	0.0035 (5)
C5	0.0205 (8)	0.0190 (7)	0.0133 (7)	0.0066 (6)	0.0028 (6)	0.0039 (5)
C6	0.0258 (8)	0.0189 (7)	0.0319 (8)	0.0124 (6)	0.0054 (7)	-0.0003 (6)
C7	0.0308 (9)	0.0266 (8)	0.0327 (9)	0.0143 (7)	0.0064 (7)	0.0085 (7)
C8	0.0169 (7)	0.0180 (7)	0.0158 (7)	0.0060 (6)	0.0047 (6)	0.0036 (5)
C9	0.0182 (7)	0.0180 (7)	0.0172 (7)	0.0096 (6)	0.0047 (6)	0.0051 (5)
C10	0.0179 (7)	0.0221 (7)	0.0196 (7)	0.0074 (6)	0.0047 (6)	0.0037 (6)
C11	0.0225 (8)	0.0327 (8)	0.0193 (7)	0.0127 (7)	0.0090 (6)	0.0079 (6)
C12	0.0260 (8)	0.0299 (8)	0.0145 (7)	0.0148 (7)	0.0015 (6)	-0.0002 (6)
C13	0.0215 (8)	0.0250 (8)	0.0244 (8)	0.0030 (6)	0.0016 (6)	-0.0007 (6)
C14	0.0218 (8)	0.0253 (7)	0.0223 (8)	0.0051 (6)	0.0084 (6)	0.0057 (6)
C15	0.0180 (7)	0.0151 (6)	0.0171 (7)	0.0062 (6)	0.0044 (6)	0.0048 (5)
C16	0.0140 (7)	0.0167 (6)	0.0154 (7)	0.0043 (6)	0.0030 (6)	0.0034 (5)
C17	0.0189 (8)	0.0210 (7)	0.0186 (7)	0.0055 (6)	0.0058 (6)	0.0033 (6)
C18	0.0147 (7)	0.0158 (6)	0.0160 (7)	0.0048 (6)	0.0036 (6)	0.0025 (5)

C19	0.0190 (7)	0.0180 (7)	0.0163 (7)	0.0034 (6)	0.0066 (6)	0.0034 (6)
C20	0.0190 (8)	0.0252 (8)	0.0249 (8)	0.0007 (6)	-0.0027 (6)	-0.0001 (6)
C21	0.0211 (8)	0.0247 (8)	0.0265 (8)	0.0003 (6)	0.0034 (7)	-0.0017 (6)
C22	0.0145 (7)	0.0168 (6)	0.0142 (7)	0.0029 (6)	0.0014 (6)	0.0024 (5)
C23	0.0183 (7)	0.0142 (6)	0.0146 (7)	0.0018 (6)	0.0054 (6)	0.0025 (5)
C24	0.0182 (7)	0.0228 (7)	0.0184 (7)	0.0070 (6)	0.0045 (6)	0.0045 (6)
C25	0.0246 (8)	0.0233 (7)	0.0152 (7)	0.0051 (6)	0.0029 (6)	0.0046 (6)
C26	0.0301 (8)	0.0217 (7)	0.0147 (7)	0.0002 (6)	0.0109 (6)	-0.0005 (6)
C27	0.0204 (8)	0.0211 (7)	0.0265 (8)	0.0066 (6)	0.0092 (6)	0.0017 (6)
C28	0.0203 (8)	0.0179 (7)	0.0187 (7)	0.0042 (6)	0.0031 (6)	0.0031 (6)
O9	0.0231 (6)	0.0241 (6)	0.0235 (6)	0.0053 (5)	0.0048 (5)	0.0044 (4)
O10	0.0423 (7)	0.0230 (6)	0.0188 (6)	0.0127 (5)	0.0053 (5)	0.0031 (5)

Geometric parameters (Å, °)

F1—C3	1.3408 (15)	С7—Н7В	0.9800
F2—C3	1.3395 (15)	С7—Н7С	0.9800
F3—C3	1.3405 (15)	C8—C9	1.5159 (17)
F4—C12	1.3671 (15)	С8—Н8	1.0000
F5—C17	1.3378 (15)	C9—C10	1.3896 (17)
F6—C17	1.3464 (14)	C9—C14	1.3897 (18)
F7—C17	1.3388 (14)	C10—C11	1.3898 (18)
F8—C26	1.3641 (14)	C10—H10	0.9500
O1—C1	1.2480 (15)	C11—C12	1.3666 (19)
O2—C2	1.4019 (15)	C11—H11	0.9500
O2—H2	0.889 (15)	C12—C13	1.374 (2)
O3—C5	1.2039 (15)	C13—C14	1.3871 (18)
O4—C5	1.3328 (15)	С13—Н13	0.9500
O4—C6	1.4600 (15)	C14—H14	0.9500
O5—C15	1.2419 (15)	C16—C17	1.5356 (18)
O6—C16	1.4001 (15)	C16—C18	1.5474 (17)
O6—H6	0.893 (16)	C18—C19	1.5173 (18)
O7—C19	1.2072 (15)	C18—C22	1.5424 (17)
O8—C19	1.3395 (15)	C18—H18	1.0000
O8—C20	1.4615 (16)	C20—C21	1.5066 (18)
N1—C1	1.3690 (16)	C20—H20A	0.9900
N1—C2	1.4418 (16)	C20—H20B	0.9900
N1—H1A	0.828 (14)	C21—H21A	0.9800
N2—C1	1.3377 (16)	C21—H21B	0.9800
N2—C8	1.4614 (16)	C21—H21C	0.9800
N2—H2A	0.906 (14)	C22—C23	1.5146 (17)
N3—C15	1.3697 (16)	C22—H22	1.0000
N3—C16	1.4424 (17)	C23—C24	1.3923 (17)
N3—H3A	0.823 (14)	C23—C28	1.3981 (18)
N4—C15	1.3390 (16)	C24—C25	1.3890 (17)
N4—C22	1.4610 (16)	C24—H24	0.9500
N4—H4A	0.904 (14)	C25—C26	1.3671 (19)
C2—C3	1.5380 (18)	С25—Н25	0.9500
C2—C4	1.5405 (17)	C26—C27	1.3769 (18)

C4—C5	1.5194 (17)	C27—C28	1.3894 (18)
C4—C8	1.5416 (17)	С27—Н27	0.9500
C4—H4	1.0000	C28—H28	0.9500
C6—C7	1.5114 (18)	О9—Н9А	0.91 (2)
С6—Н6А	0.9900	О9—Н9В	0.80 (2)
С6—Н6В	0.9900	O10—H10A	0.861 (17)
С7—Н7А	0.9800	O10—H10B	0.82 (2)
С2—О2—Н2	109.7 (10)	F4—C12—C13	118.48 (13)
C5—O4—C6	116.13 (10)	C12—C13—C14	117.91 (13)
С16—О6—Н6	107.7 (10)	С12—С13—Н13	121.0
C19—O8—C20	115.41 (10)	C14—C13—H13	121.0
C1—N1—C2	124.52 (12)	C13—C14—C9	121.27 (13)
C1—N1—H1A	114.5 (10)	C13—C14—H14	119.4
C2—N1—H1A	117.6 (10)	C9—C14—H14	119.4
C1—N2—C8	124.97 (11)	O5—C15—N4	123.03 (12)
C1—N2—H2A	116.4 (9)	O5—C15—N3	119.63 (12)
C8—N2—H2A	117.0 (9)	N4—C15—N3	117.30 (12)
C15—N3—C16	123.46 (11)	O6—C16—N3	113.49 (10)
C15—N3—H3A	113.1 (11)	06-C16-C17	109.05 (10)
C16—N3—H3A	115 5 (11)	N3—C16—C17	105 57 (10)
C15—N4—C22	125.04 (11)	06-C16-C18	109.01(10)
C15—N4—H4A	113 9 (9)	N_{3} C16 C18	108 46 (10)
C22—N4—H4A	120 5 (9)	C_{17} $-C_{16}$ $-C_{18}$	111 26 (11)
$01-C1-N^2$	120.5(9) 121.75(12)	F5-C17-F7	107.47(10)
01 - C1 - N2	121.73(12) 120.47(12)	F5-C17-F6	107.17(10) 107.27(10)
$N_2 - C_1 - N_1$	120.47(12) 117.75(12)	F7F6	107.27(10) 107.20(10)
02-02-N1	114.18 (11)	F5-C17-C16	107.20(10) 112.27(11)
02 - 02 - 03	108 30 (10)	F7	112.27(11) 111.87(11)
N1 - C2 - C3	106.15 (11)	F6-C17-C16	110.49 (11)
$\Omega_2 = \Omega_2 = \Omega_3$	108.86 (10)	$C_{10} = C_{10} = C_{10}$	110.45(11)
$V_2 = C_2 = C_4$	108.80(10) 108.53(10)	$C_{19} = C_{18} = C_{22}$	110.13(10) 111.83(10)
$C_2 = C_4$	108.33(10) 110.82(11)	$C_{12} = C_{13} = C_{16}$	111.85(10) 107.50(10)
$E_{2}^{-} = C_{2}^{-} = C_{4}^{-}$	10.02(11) 107.29(11)	$C_{22} = C_{18} = C_{10}$	107.30 (10)
$F_2 = C_3 = F_3$	107.29 (11)	$C_{12} = C_{13} = H_{13}$	109.1
$F_2 = C_3 = F_1$	100.01(11) 107.00(10)	C16 C18 U18	109.1
$F_{3} = C_{3} = F_{1}$	107.09 (10)	C10-C18-H18	109.1
$F_2 = C_3 = C_2$	112.82 (11)	0/01908	125.52(12)
$F_{3} = C_{3} = C_{2}$	111.21 (11)	$0^{-1} - 1^{-1} - 1^{-1}$	125.21 (12)
$FI = C_3 = C_2$	111.32 (11)	08-019-018	111.27 (11)
$C_{5} = C_{4} = C_{2}$	114.01 (10)	08-020-021	107.16(11)
$C_{5} - C_{4} - C_{8}$	109.05 (11)	08—C20—H20A	110.3
C2C4C8	108.95 (10)	C21—C20—H20A	110.3
C5—C4—H4	108.2	08—C20—H20B	110.3
C2—C4—H4	108.2	C21—C20—H20B	110.3
C8—C4—H4	108.2	H20A—C20—H20B	108.5
03-05-04	124.46 (12)	C20—C21—H21A	109.5
03	125.69 (12)	C20—C21—H21B	109.5
04	109.81 (11)	H21A—C21—H21B	109.5
O4—C6—C7	110.18 (11)	C20—C21—H21C	109.5
O4—C6—H6A	109.6	H21A—C21—H21C	109.5

С7—С6—Н6А	109.6	H21B—C21—H21C	109.5
O4—C6—H6B	109.6	N4—C22—C23	109.79 (11)
С7—С6—Н6В	109.6	N4—C22—C18	107.87 (10)
H6A—C6—H6B	108.1	C23—C22—C18	114.33 (10)
С6—С7—Н7А	109.5	N4—C22—H22	108.2
С6—С7—Н7В	109.5	С23—С22—Н22	108.2
H7A—C7—H7B	109.5	C18—C22—H22	108.2
С6—С7—Н7С	109.5	C24—C23—C28	118.56 (12)
H7A—C7—H7C	109.5	C24—C23—C22	120.04 (11)
H7B—C7—H7C	109.5	C28—C23—C22	121.35 (11)
N2—C8—C9	109.11 (10)	C25—C24—C23	121.33 (12)
N2—C8—C4	107.61 (10)	C25—C24—H24	119.3
C9—C8—C4	112.55 (10)	C23—C24—H24	119.3
N2—C8—H8	109.2	C26—C25—C24	117.96 (12)
С9—С8—Н8	109.2	С26—С25—Н25	121.0
С4—С8—Н8	109.2	C24—C25—H25	121.0
C10-C9-C14	118.47 (13)	F8—C26—C25	118.52 (12)
C10—C9—C8	120.19 (12)	F8—C26—C27	118.24 (12)
C14—C9—C8	121.31 (12)	C25—C26—C27	123.24 (13)
C9—C10—C11	121.14 (13)	C26—C27—C28	118.16 (13)
С9—С10—Н10	119.4	С26—С27—Н27	120.9
C11—C10—H10	119.4	С28—С27—Н27	120.9
C12—C11—C10	118.08 (13)	C27—C28—C23	120.75 (12)
С12—С11—Н11	121.0	C27—C28—H28	119.6
C10—C11—H11	121.0	C23—C28—H28	119.6
C11—C12—F4	118.40 (13)	Н9А—О9—Н9В	114.7 (18)
C11—C12—C13	123.12 (13)	H10A—O10—H10B	110.6 (17)
C8—N2—C1—O1	-175.03 (12)	C22—N4—C15—O5	-170.31 (12)
C8—N2—C1—N1	7.05 (19)	C22—N4—C15—N3	12.12 (18)
C2-N1-C1-01	176.03 (12)	C16—N3—C15—O5	168.82 (11)
C2—N1—C1—N2	-6.03 (19)	C16—N3—C15—N4	-13.53 (18)
C1—N1—C2—O2	-90.65 (15)	C15—N3—C16—O6	-83.84 (15)
C1—N1—C2—C3	150.12 (12)	C15—N3—C16—C17	156.78 (12)
C1—N1—C2—C4	30.96 (17)	C15—N3—C16—C18	37.46 (16)
O2—C2—C3—F2	174.10 (10)	O6-C16-C17-F5	57.31 (14)
N1—C2—C3—F2	-62.89 (14)	N3—C16—C17—F5	179.58 (10)
C4—C2—C3—F2	54.76 (14)	C18—C16—C17—F5	-62.96 (14)
O2—C2—C3—F3	-65.29 (13)	O6—C16—C17—F7	178.24 (10)
N1—C2—C3—F3	57.72 (14)	N3—C16—C17—F7	-59.49 (13)
C4—C2—C3—F3	175.37 (10)	C18—C16—C17—F7	57.97 (14)
O2—C2—C3—F1	54.03 (14)	O6-C16-C17-F6	-62.40 (13)
N1—C2—C3—F1	177.05 (11)	N3-C16-C17-F6	59.87 (13)
C4—C2—C3—F1	-65.30 (14)	C18—C16—C17—F6	177.33 (10)
O2—C2—C4—C5	-51.86 (14)	O6-C16-C18-C19	-54.09 (13)
N1—C2—C4—C5	-176.67 (10)	N3-C16-C18-C19	-178.11 (10)
C3—C2—C4—C5	67.14 (14)	C17—C16—C18—C19	66.20 (14)
O2—C2—C4—C8	70.19 (12)	O6—C16—C18—C22	66.94 (13)
N1—C2—C4—C8	-54.63 (14)	N3-C16-C18-C22	-57.08 (13)
C3—C2—C4—C8	-170.82 (11)	C17—C16—C18—C22	-172.77 (10)

C6—O4—C5—O3	-1.83 (18)	C20—O8—C19—O7	-2.87 (18)
C6—O4—C5—C4	-179.41 (10)	C20	177.89 (10)
C2—C4—C5—O3	69.04 (17)	C22-C18-C19-O7	-49.13 (17)
C8—C4—C5—O3	-52.95 (17)	C16—C18—C19—O7	70.36 (16)
C2—C4—C5—O4	-113.42 (12)	C22-C18-C19-O8	130.10 (11)
C8—C4—C5—O4	124.58 (11)	C16-C18-C19-O8	-110.42 (12)
C5—O4—C6—C7	-84.19 (14)	C19—O8—C20—C21	-175.59 (11)
C1—N2—C8—C9	-155.05 (12)	C15—N4—C22—C23	-159.94 (12)
C1—N2—C8—C4	-32.65 (17)	C15—N4—C22—C18	-34.77 (16)
C5—C4—C8—N2	180.00 (10)	C19—C18—C22—N4	177.29 (10)
C2—C4—C8—N2	55.00 (13)	C16-C18-C22-N4	55.21 (13)
C5—C4—C8—C9	-59.74 (14)	C19—C18—C22—C23	-60.28 (14)
C2—C4—C8—C9	175.25 (11)	C16-C18-C22-C23	177.64 (10)
N2-C8-C9-C10	-116.25 (13)	N4-C22-C23-C24	-143.56 (12)
C4—C8—C9—C10	124.37 (12)	C18—C22—C23—C24	95.07 (14)
N2-C8-C9-C14	61.58 (15)	N4—C22—C23—C28	33.85 (16)
C4—C8—C9—C14	-57.80 (15)	C18—C22—C23—C28	-87.53 (15)
C14—C9—C10—C11	-0.64 (18)	C28—C23—C24—C25	0.19 (19)
C8—C9—C10—C11	177.25 (11)	C22—C23—C24—C25	177.67 (12)
C9—C10—C11—C12	1.40 (19)	C23—C24—C25—C26	-0.9 (2)
C10-C11-C12-F4	178.09 (11)	C24—C25—C26—F8	-178.72 (11)
C10-C11-C12-C13	-1.1 (2)	C24—C25—C26—C27	1.0 (2)
C11—C12—C13—C14	0.1 (2)	F8—C26—C27—C28	179.41 (11)
F4-C12-C13-C14	-179.12 (11)	C25—C26—C27—C28	-0.3 (2)
C12—C13—C14—C9	0.7 (2)	C26—C27—C28—C23	-0.5 (2)
C10-C9-C14-C13	-0.43 (19)	C24—C23—C28—C27	0.53 (19)
C8—C9—C14—C13	-178.30 (12)	C22—C23—C28—C27	-176.91 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O2—H2···O9 ⁱ	0.889 (15)	1.860 (16)	2.7482 (14)	176.2 (15)
O9—H9A···O3 ⁱⁱ	0.91 (2)	1.90 (2)	2.8026 (15)	169.8 (18)
O6—H6…O10 ⁱⁱⁱ	0.893 (16)	1.788 (16)	2.6770 (14)	173.5 (15)
N3—H3A…O10 ⁱⁱⁱ	0.823 (14)	2.583 (15)	3.0737 (16)	119.6 (12)
N4—H4A····O5 ⁱⁱⁱ	0.904 (14)	1.900 (15)	2.8010 (14)	174.8 (13)
N1—H1A····O1 ^{iv}	0.828 (14)	2.109 (14)	2.9235 (15)	167.9 (13)
N2—H2A····O5 ^v	0.906 (14)	1.958 (15)	2.8395 (14)	163.8 (13)
09—H9B…O1 ^{vi}	0.80 (2)	2.00 (2)	2.7443 (15)	155 (2)
O10—H10A····O9 ^{vii}	0.861 (17)	1.925 (17)	2.7833 (15)	175.4 (16)
O10—H10B…O7 ^{viii}	0.82 (2)	2.07 (2)	2.8685 (14)	166 (2)

Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+2, -z+2; (iv) -x+1, -y, -z+1; (v) -x+1, -y+1, -z+2; (vi) -x+1, -y+2, -z+1; (vii) -x+1, -z+2; (vi) -x+1, -y+2, -z+1; (vii) -x+1, -z+2; (vi) -x+1, -y+2, -z+1; (vii) -x+1, -y+2, -z+1; (vii) -x+1, -y+2, -z+1; (vii) -x+1, -y+2, -z+1; (vii) -x+1, -y+2, -z+2; (vi) -x+1, -z+2; (vi) -x+1, -z+2; (vi) -x+1, -z+2; (vi) -x+2, -z+2; (vi) -x+1, -z+2; (vi) -x+1, -z+2; (vi) -x+1, -z+2; (vi) -x+2, -z+2; (vi) -x+2, -z+2; (vi) -x+1, -z+2; (vi) -x+1, -z+2; (vi) -x+2, -z+2; (vi) -x+2, -z+2; (vi) -x+1, -z+2; (vi) -x+2, -z

